Monthly Gene Therapy Business Review - December 2017

This newsletter provides commercial insights into the ongoing development of the gene therapy market.  The most noteworthy stories appear at the top along with our commentary.

Connect with Us at #JPM18

RxC International will be at the JP Morgan conference and surrounding events.  To schedule 20 minutes discussing gene therapy commercialization and access issues, contact us here.

We are expecting a few gene therapy points of interest to emerge from JMP 2018, including:

  • Pricing discussions

  • Regulatory Approval issues and timing

  • Commercialization challenges and market access strategies

1) First Mover Advantage? Gilead Blazes Trail for Competition

While having the first-mover advantage is traditionally considered a boon in the pharmaceutical industry, in Yescarta’s case, any advantage is disappearing with delays in access as Gilead builds reimbursement infrastructure that benefits the competition and allows increased time for competitors to launch.

Conservative Wall Street uptake forecasts that revenues would exceed $9 million in 2017, the equivalent of treating roughly 25 patients, weren’t met.  Gilead is a highly capable commercial organization that has faced access and pricing challenges before but this case demonstrates the importance of careful commercial planning when developing high cost gene therapies both for realizing returns on investments and ensuring that patients who desperately need these treatments receive them in time to make a difference.

Hundreds of cancer patients sit on waiting lists to receive Yescarta but only 5 have been treated since this potentially life-saving gene therapy’s approval in October. The new treatment has no billing code for Medicare/Medicaid recipients, forcing hospitals to choose between leaving dying patients untreated or risking millions of dollars that may not be reimbursed.  Insurance companies have also been slow to adopt the treatment.

2) Newly-Published Yescarta Study Raises Safety Concerns

Gene therapy companies must develop a distribution model that addresses safety concerns while supporting commercialization efforts.  Since many gene therapy products could require specialized capabilities, treatment centers of excellence are likely to be an important element to commercial planning.

A study published this month in the New England Journal of Medicine highlights the success of Yescarta (axicabtagene ciloleucel) in treating diffuse large B-cell lymphoma but also reveals that 95% of those who received Yescarta experienced severe effects and that 13% of those side effects were classified as life-threatening.  The FDA’s approval of Yescarta included a risk evaluation and mitigation strategy (REMS) that requires hospitals and staff to be specially certified to dispense or administer Yescarta.

While safety needs demand additional research, the study indicated that even after 15 months 42% of patients who received Yescarta are still responding to treatment.

3) Results from Hemophilia Gene Therapy Studies Prompt Pricing Questions...Again

While certainly to be priced extremely high, a gene therapy that cures Hemophilia offers significant savings over the lifetime of a hemophilia sufferer given that hemophilia patients require lifelong treatments that on average cost $155,136, but a patient using inhibitors can cost $400,000+ a year.

Pricing a cure for Hemophilia raises the question of if there’s a maximum that health systems are willing to pay for a treatment. Depending on assumptions, the present value of a lifetime worth of therapy can easily exceed $3 million and be as high as $7 million. How much is a cure worth for a patient? Should therapy cost differ based on patient age?

The absence of long-term data throws another wrench into pricing considerations. Without information on the longevity of a Hemophilia gene therapy, payers won’t even know if treatments truly are lifelong.

One important aspect of commercializing a Hemophilia cure, no matter what the final price might be, is communicating its value to stakeholders and ensuring that there is transparency around pricing.

The recent success of two Hemophilia studies offers hope to patients who undergo frequent infusions.  Results from BioMarin’s study for a gene therapy to treat Hemophilia A, the most common type of Hemophilia, showed that all 9 patients stopped using clotting factors; bleeding events also fell dramatically. “[Patients’] bleeding rates collapsed to zero or nearly zero and we’ve improved their quality of life beyond recognition.”

Research Updates

1) FDA Approves Spark Therapeutics’ Blindness Treatment

The FDA approved the third ever gene therapy, Luxturna (voretigene neparvovec-rzyl), to treat children and adults with hereditary retinal dystrophy.  The disease causes vision loss and may lead to blindness.

2) Genetic Differences Could Impact Efficacy and Safety of CRISPR

Gene editing technology may need to be tailored to each patient’s specific genome sequence to maximize treatment effectiveness and prevent side effects.

3) CRISPR may Treat Hearing Loss

Scientists successfully restored hearing in animals by injecting CRISPR-Cas9 into mice cochlear hairs.

4) Gene Therapy Restores Functional Hemoglobin for Sufferers of Sickle Cell Disease

LentiGlobin gene therapy may enable those with sickle cell disease to forego transfusion, potentially outperforming the yet-to-be-approved drug therapies crizanlizumab (Novartis) and voxelotor (Global Blood).

5) From Hospice to Hope: Encouraging Results for Myeloma Gene Therapy Treatment

Bluebird Bio announced encouraging Phase 1 dose-escalation study results for patients suffering from advanced multiple myeloma.  After receiving bb2121, 94% responded to the treatment and 56% remained in remission. Some patients were headed to hospice before receiving treatment.  "This is unheard of, something that we haven't seen with any drugs approved for myeloma in this type of population. The excitement among all the myeloma providers is crazy."

6) Bypassing the Blood-Brain Barrier for Neurological Diseases

Genetically engineered microglia, brain immune cells, inserted into brain ventricles may regenerate brain tissue and treat brain diseases, say researchers.  Injecting cells directly into the brain allows them to more quickly multiply and begin repairing damaged tissue.

7) Clinical Trials in Sight for Duchenne Muscular Dystrophy Gene Therapy

By replacing a faulty gene with an engineered one, a researcher believes he can treat Duchenne muscular dystrophy.  Solid Biosciences licensed SGT-001 and has begun clinical trials for the treatment.

8) CAR-T Therapy Updates

9) New Viral Vectors May Prevent Immune Response to Gene Therapy

Recent research has shown promise in using new viral vectors to prevent gene therapy immune responses, which may neutralize vectors and pose other hazards to patients.

Other News

1) Gilead Buys Cell Design

Sign Up for More

If you would like to subscribe to receive RxC International’s Monthly Gene Therapy Business Review, sign up here.


About RxC International

RxC International is a premier life sciences management consulting firm. RxC collaborates with clients to identify and develop growth opportunities. The firm leverages consulting partners and advisers to combine strategic and operational expertise to bring multiple perspectives to every engagement. The firm has deep expertise in corporate strategy, new product strategy, and commercial excellence.

 
Previous
Previous

A little earlier than expected, Spark’s announces Luxturna pricing, $850k

Next
Next

Monthly Gene Therapy Business Review - November 2017